Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068633

RESUMO

Bottle gourd (Lagenaria siceraria) is a well-known cucurbit with an active functional ingredient. A two-year field experiment was carried out at the Research Farm of Seed Science and Technology, CCS HAU, Hisar, in a randomized block design during the Kharif season (Kharif is one of the two major cropping seasons in India and other South Asian countries, heavily reliant on monsoon rains with the other being Rabi) and the summer season. Five different crossing periods (CP), viz. CP1, CP2, CP3, CP4, and CP5, were considered to illustrate the effects of agro-climatic conditions on the quality and biochemical components of two bottle gourd parental lines and one hybrid, HBGH-35. The average mean temperature for the Kharif season in 2017 was 31.7 °C, and for the summer season, it was 40.1 °C. Flowers were tagged weekly from the start of the crossing period until the end and harvested separately at different times. The fruits harvested from different crossing periods under different environmental conditions influenced the bottle gourd's qualitative and biochemical traits and showed significant variations among the five crossing period environments. A positive significance and correlation were observed between weather variables and different biochemical characteristics. Henceforth, the CP4 crossing period at a temperature of 31.7 °C retained high-quality seed development, which may be essential in enhancing agricultural productivity and the national economy.

2.
Plants (Basel) ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631221

RESUMO

Moringa oleifera is a rich source of polyphenols whose contents and profile may vary according to environmental conditions, harvest season, and plant tissue. The present study aimed to characterize the profile of phenolic compounds in different tissues of M. oleifera grown under different temperatures (25, 30, and 35 °C), using HPLC/MS, as well as their constituent phytochemicals and in vitro antioxidant activities. The in vitro antioxidant activity of the extracts was evaluated using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-3-ethylenebenzothiozoline-6-sulfonicacid (ABTS), and ferric-reducing antioxidant power (FRAP) methods. The polyphenolic compounds were mainly found in the leaves at 30 °C. UPLC/QTOF-MS allowed for the identification of 34 polyphenolic components in seedlings, primarily consisting of glucosides, phenols, flavonoids, and methoxy flavones. At 30 °C, the specific activities of antioxidative enzymes were the highest in leaves, followed by seedlings and then seeds. The leaf and seed extracts also exhibited a greater accumulation of proline, glycine betaine, and antioxidants, such as ascorbic acid, and carotenoids, as measured by the inhibition of ROS production. We found that changes in the expression levels of the validated candidate genes Cu/Zn-SOD, APX, GPP, and TPS lead to significant differences in the germination rate and biochemical changes. These findings demonstrate that M. oleifera plants have high concentrations of phytochemicals and antioxidants, making them an excellent choice for further research to determine their use as health-promoting dietary supplements.

3.
Curr Issues Mol Biol ; 45(2): 1349-1372, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826033

RESUMO

Bottle gourd, a common vegetable in the human diet, has been valued for its medicinal and energetic properties. In this experiment, the time-resolved analysis of the changes in the proteins' electrophoretic patterning of the seed development at different crossing periods was studied in bottle gourd using label-free quantitative proteomics. Hybrid HBGH-35 had the highest observed protein levels at the 4th week of the crossing period (F4) compared to the parental lines, viz. G-2 (M) and Pusa Naveen (F). The crossing period is significantly correlated with grain filling and reserve accumulation. The observed protein expression profile after storage was related to seed maturation and grain filling in bottle gourds. A total of 2517 proteins were identified in differentially treated bottle gourd fruits, and 372 proteins were differentially expressed between different crossing periods. Proteins related to carbohydrate and energy metabolism, anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Some proteins were involved in the development, while others were engaged in desiccation and the early grain-filling stage. F4 was distinguished by an increase in the accumulation of low molecular weight proteins and enzymes such as amylase, a serine protease, and trypsin inhibitors. The seed vigor also followed similar patterns of differential expression of seed storage proteins. Our findings defined a new window during seed production, which showed that at F4, maximum photosynthetic assimilates accumulated, resulting in an enhanced source-sink relationship and improved seed production. Our study attempts to observe the protein expression profiling pattern under different crossing periods using label-free quantitative proteomics in bottle gourd. It will facilitate future detailed investigation of the protein associated with quality traits and the agronomic importance of bottle gourd through selective breeding programs.

4.
Front Biosci (Landmark Ed) ; 27(11): 310, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36472106

RESUMO

In the present era of climate change and global warming, high temperatures have increased considerably, posing a threat to plant life. Heat stress affects the biochemistry, physiology and molecular makeup of the plant by altering the key processes, i.e., photosynthesis, respiration and reproduction which reduces its growth and development. There is a dire need to manage this problem sustainably for plant conservation as well as the food security of the human population. Use of phytohormones to induce thermotolerance in plants can be a sustainable way to fight the adversities of heat stress. Phytohormone-induced thermotolerance proves to be a compelling approach to sustainably relieve the damaging effects of heat stress on plants. Salicylic acid (SA) is an essential molecule in biotic and abiotic defense response signal transduction pathways. When supplied externally, it imparts heat stress tolerance to the plants by different means, viz., increased Heat Shock Proteins (HSP) production, Reactive oxygen species (ROS) scavenging, protection of the reproductive system and enhancing photosynthetic efficiency. The effect of SA on plants is highly dependent on the concentration applied, plant species, plant age, type of tissues treated, and duration of the treatment. The present review paper summarizes the mechanism of thermotolerance induced by salicylic acid in plants under heat stress conditions. It includes the regulatory effects of SA on heat shock proteins, antioxidant metabolism, and maintenance of Ca2+ homeostasis under heat stress. This review combines the studies conducted to elucidate the role of SA in the modulation of different mechanisms which lead to heat stress tolerance in plants. It discusses the mechanism of SA in protecting the photosynthetic machinery and reproductive system during high-temperature stress.


Assuntos
Resposta ao Choque Térmico , Ácido Salicílico , Humanos , Ácido Salicílico/farmacologia , Fotossíntese , Antioxidantes/farmacologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Estresse Fisiológico
5.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616513

RESUMO

With an increasing population, world agriculture is facing many challenges, such as climate change, urbanization, the use of natural resources in a sustainable manner, runoff losses, and the accumulation of pesticides and fertilizers. The global water shortage is a crisis for agriculture, because drought is one of the natural disasters that affect the farmers as well as their country's social, economic, and environmental status. The application of soil amendments is a strategy to mitigate the adverse impact of drought stress. The development of agronomic strategies enabling the reduction in drought stress in cultivated crops is, therefore, a crucial priority. Superabsorbent polymers (SAPs) can be used as an amendment for soil health improvement, ultimately improving water holding capacity and plant available water. These are eco-friendly and non-toxic materials, which have incredible water absorption ability and water holding capacity in the soil because of their unique biochemical and structural properties. Polymers can retain water more than their weight in water and achieve approximately 95% water release. SAP improve the soil like porosity (0.26-6.91%), water holding capacity (5.68-17.90%), and reduce nitrogen leaching losses from soil by up to 45%. This review focuses on the economic assessment of the adoption of superabsorbent polymers and brings out the discrepancies associated with the influence of SAPs application in the context of different textured soil, presence of drought, and their adoption by farmers.

6.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948045

RESUMO

Salt stress is one of the major significant restrictions that hamper plant development and agriculture ecosystems worldwide. Novel climate-adapted cultivars and stress tolerance-enhancing molecules are increasingly appreciated to mitigate the detrimental impacts of adverse stressful conditions. Sorghum is a valuable source of food and a potential model for exploring and understanding salt stress dynamics in cereals and for gaining a better understanding of their physiological pathways. Herein, we evaluate the antioxidant scavengers, photosynthetic regulation, and molecular mechanism of ion exclusion transporters in sorghum genotypes under saline conditions. A pot experiment was conducted in two sorghum genotypes viz. SSG 59-3 and PC-5 in a climate-controlled greenhouse under different salt concentrations (60, 80, 100, and 120 mM NaCl). Salinity drastically affected the photosynthetic machinery by reducing the accumulation of chlorophyll pigments and carotenoids. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, GST, DHAR, MDHAR, GSH, ASC, proline, GB), as well as protecting cell membrane integrity (MDA, electrolyte leakage). Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via the concomitant upregulation of SbSOS1, SbSOS2, and SbNHX-2 and SbV-Ppase-II ion transporter genes in sorghum genotypes. Overall, these results suggest that Na+ ions were retained and detoxified, and less stress impact was observed in mature and younger leaves. Based on the above, we deciphered that SSG 59-3 performed better by retaining higher plant water status, photosynthetic assimilates and antioxidant potential, and the upregulation of ion transporter genes and may be utilized in the development of resistant sorghum lines in saline regions.


Assuntos
Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Bombas de Íon/metabolismo , Metabolômica/métodos , Sorghum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Fotossíntese , Proteínas de Plantas/metabolismo , Estresse Salino , Sorghum/genética , Sorghum/metabolismo , Regulação para Cima
7.
J Nanosci Nanotechnol ; 21(6): 3351-3366, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739793

RESUMO

Humanity depends (directly or indirectly) exclusively on agriculture for their survival. Due to the exponential growth in population, it is imperative to use new scientific tools and technologies such as nanotechnology in agriculture. The objective of this review is to provide an overview of the use of nanomaterials (NMs) and nanoparticles (NPs) in form of nanofertilizers (NFs) to enhance plant nourishment, reflecting their potential benefits and possible uses, and also assessing their potential impact on ecosystem. NFs possess an alternative approach as compared to biofertilizers, biopesticides and organic fertilizers that started from green revolution. NFs affect crop's nutritional quality and stress tolerance in plants. There are both pons and cons of NPs and NMs when used in agriculture. These studies are necessary because NPs and NMs can be transferred to ecosystems by various pathways where they can cause toxicity to organisms, affecting the biodiversity and abundance of such ecosystems, and may ultimately even be transferred to consumers. The progress in the crop improvement processes such as implementation of nanodevices for genetic manipulation of plants depends on advanced techniques used in nanotechnology.


Assuntos
Fertilizantes , Praguicidas , Agricultura , Ecossistema , Fertilizantes/análise , Nanotecnologia , Praguicidas/toxicidade
8.
Plants (Basel) ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34834826

RESUMO

Salt stress is one of the major constraints affecting plant growth and agricultural productivity worldwide. Sorghum is a valuable food source and a potential model for studying and better understanding the salt stress mechanics in the cereals and obtaining a more comprehensive knowledge of their cellular responses. Herein, we examined the effects of salinity on reserve mobilization, antioxidant potential, and expression analysis of starch synthesis genes. Our findings show that germination percentage is adversely affected by all salinity levels, more remarkably at 120 mM (36% reduction) and 140 mM NaCl (46% reduction) than in the control. Lipid peroxidation increased in salt-susceptible genotypes (PC-5: 2.88 and CSV 44F: 2.93 nmloe/g.FW), but not in tolerant genotypes. SSG 59-3 increased activities of α-amylase, and protease enzymes corroborated decreased starch and protein content, respectively. SSG 59-3 alleviated adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, and GPX), as well as protecting cell membrane integrity (MDA, electrolyte leakage). A significant increase (p ≤ 0.05) was also observed in SSG 59-3 with proline, ascorbic acid, and total carbohydrates. Among inorganic cations and anions, Na+, Cl-, and SO42- increased, whereas K+, Mg2+, and Ca2+ decreased significantly. SSG 59-3 had a less pronounced effect of excess Na+ ions on the gene expression of starch synthesis. Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of SbNHX-1 and SbVPPase-I ion transporter genes. Thus, we have highlighted that salinity physiologically and biochemically affect sorghum seedling growth. Based on these findings, we highlighted that SSG 59-3 performed better by retaining higher plant water status, antioxidant potential, and upregulation of ion transporter genes and starch synthesis, thereby alleviating stress, which may be augmented as genetic resources to establish sorghum cultivars with improved quality in saline soils.

9.
Antioxidants (Basel) ; 10(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34679740

RESUMO

Salinity stress has become a significant concern to global food security. Revealing the mechanisms that enable plants to survive under salinity has immense significance. Sorghum has increasingly attracted researchers interested in understanding the survival and adaptation strategies to high salinity. However, systematic analysis of the DEGs (differentially expressed genes) and their relative expression has not been reported in sorghum under salt stress. The de novo transcriptomic analysis of sorghum under different salinity levels from 60 to 120 mM NaCl was generated using Illumina HiSeq. Approximately 323.49 million high-quality reads, with an average contig length of 1145 bp, were assembled de novo. On average, 62% of unigenes were functionally annotated to known proteins. These DEGs were mainly involved in several important metabolic processes, such as carbohydrate and lipid metabolism, cell wall biogenesis, photosynthesis, and hormone signaling. SSG 59-3 alleviated the adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, APX, POX, GR, GSH, ASC, proline, and GB), as well as protecting cell membrane integrity (MDA and electrolyte leakage). Significant up-regulation of transcripts encoding the NAC, MYB, and WRYK families, NHX transporters, the aquaporin protein family, photosynthetic genes, antioxidants, and compatible osmolyte proteins were observed. The tolerant line (SSG 59-3) engaged highly efficient machinery in response to elevated salinity, especially during the transport and influx of K+ ions, signal transduction, and osmotic homeostasis. Our data provide insights into the evolution of the NAC TFs gene family and further support the hypothesis that these genes are essential for plant responses to salinity. The findings may provide a molecular foundation for further exploring the potential functions of NAC TFs in developing salt-resistant sorghum lines.

10.
3 Biotech ; 10(9): 412, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32904477

RESUMO

Sorghum is a C4 cereal grain crop which is well adapted to harsh environment. It is a potential model for gaining better understanding of the molecular mechanism due to its wider adaptability to abiotic stresses. In this study, protein extraction was standardized using different methods to study the electrophoretic pattern of sorghum leaves under different salinity levels. The extraction of soluble protein with lysis buffer, followed by its clean-up was found to be the most effective method. The different profiles of salt-responsive proteins were analyzed in G-46 and CSV 44F sorghum genotypes based on their tolerance behavior towards salinity. The kafirin level also changed depending upon the concentration and exposure time to salts suggesting the stored proteins as energy source under stress conditions. The relative expression of salt-responsive genes was studied using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) which might be used as a molecular screening tool for identification of salt-tolerant genotypes in affected areas. The validated responses were examined in terms of metabolic changes and the expression of stress-induced proteins-viz. heat shock proteins (hsp) via immunoblotting assay. The results showed that the two sorghum genotypes adopted distinct approaches in response to salinity, with G-46 performing better in terms of leaf function. Also, we have standardized different protein extraction methods followed by their clean-up for electrophoretic profiling.

11.
Molecules ; 25(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707993

RESUMO

Food-based components represent major sources of functional bioactive compounds. Milk is a rich source of multiple bioactive peptides that not only help to fulfill consumers 'nutritional requirements but also play a significant role in preventing several health disorders. Understanding the chemical composition of milk and its products is critical for producing consistent and high-quality dairy products and functional dairy ingredients. Over the last two decades, peptides have gained significant attention by scientific evidence for its beneficial health impacts besides their established nutrient value. Increasing awareness of essential milk proteins has facilitated the development of novel milk protein products that are progressively required for nutritional benefits. The need to better understand the beneficial effects of milk-protein derived peptides has, therefore, led to the development of analytical approaches for the isolation, separation and identification of bioactive peptides in complex dairy products. Continuous emphasis is on the biological function and nutritional characteristics of milk constituents using several powerful techniques, namely omics, model cell lines, gut microbiome analysis and imaging techniques. This review briefly describes the state-of-the-art approach of peptidomics and lipidomics profiling approaches for the identification and detection of milk-derived bioactive peptides while taking into account recent progress in their analysis and emphasizing the difficulty of analysis of these functional and endogenous peptides.


Assuntos
Laticínios/análise , Proteínas do Leite/análise , Peptídeos/análise , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Hipertensivos/química , Antioxidantes/química , Humanos , Fatores Imunológicos/química , Leite/química , Valor Nutritivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...